
Kalpa Publications in Computing

Volume XXX, 2022, Pages 116–119

Proceedings of V XoveTIC Conference. XoveTIC 2022

Annotated Dataset for Anomaly Detection in a SDN

infraestructure

Anxo Otero Dans and Vı́ctor Manuel Carneiro Dı́az

CITIC - Department of Computer Science and Information Technologies , University of A Coruña,
15071 A Coruña, Spain

{anxo.oterod, victor.carneiro}@udc.es

Abstract

Software-Defined Network (SDN) is an emerging architecture which objective is to re-
duce the limitations of traditional IP networks by decoupling the network tasks performed
on each device in certain planes by controlling and managing the whole network from a
centralized location. However, this centralization also introduces new inefficiencies and
vulnerabilities, such as those related to southbound and northbound controller interfaces,
which often negatively affect security. In the past years, Machine Learning (ML) tech-
niques have been implemented in SDN architectures to protect networks and solve security
problems but sometimes it is difficult to obtain the right characteristics in real time. In
this paper, we introduce a flow-based anomaly detection system in which the controller
itself is in charge of receiving, analyzing and classifying the traffic by extracting a group
of flow features.

1 Introduction

In traditional networks there are two main planes; the control plane, which is responsible
for filling the routing table, drawing the network topology and thus enabling the data plane
functions; the second is known as the data plane, which handles the functions of forwarding
packets from one interface to another relying on the control plane logic.

Software-defined networking (SDN) has brought a new paradigm in which the control plane
and the data plane are decoupled allowing the centralization of network logic and topology
through a device called controller which is responsible for taking all decisions in the network
while the rest of the network devices become simple packet forwarders whose behaviour can be
modified through a new standard protocol called OpenFlow (OF). This centralization provides
greater cost efficiency and easier maintenance of the devices that make up the network topology.

Despite the advantages provided, SDNs are susceptible to new types of threats and for this
reason, there has been plenty of studies related with SDN security over the past years. Early
work on SDN security [1] focused solely on the implementation of access control lists within
the SDN controller missing a lot of important aspects. Another solutions are the SDN-based
firewall like [4] [9] [2] which focuses on creating a centralized firewall leveraging the controller
that enables programmability and keeps track of the flow path space, however, these approaches

A. Leitao and L. Ramos (eds.), XoveTIC2022 (Kalpa Publications in Computing, vol. XXX), pp. 116–119



Annotated Dataset for Anomaly Detection in a SDN infraestructure Otero and Carneiro

do not take into account a large number of flow characteristics that can influence anomaly
detection.

In terms of security, conventional networks usually rely on firewalls and intrusion detection
systems (IDS) which sometimes may lead to a harder maintenance of the network security. In
order to create an effiecient anomaly detection system it is very important to collect informa-
tion and extract features, and as mentioned above, SDN has great capabilities for information
gathering due to the centralization of the network logic thanks to the controller which is able
to obtain real-time information and monitor the network from a global perspective by making
requests to the OpenFlow switches without the knowledge of the network hosts, and with this
information we can classify traffic flows that can later be used to create classification models
and detect anomalies in the network. While it is true that some of the current controllers
on the market offer functionalities for collecting traffic information, this information is often
insufficient and incomplete.

In this paper we introduce a flow-based anomaly detection system in which the network itself,
throughout the controller is in charge of detecting anomalous traffic by receiving, analyzing and
classifying traffic without a third-party software. Due to the possibility of self-development, the
application is not only able to obtain the data requested to the OpenFlow switches but it is also
able to obtain features taking into account the context and it is also able to obtain mathematical
statistics such as mean, variance, maximum and minimum values of different features.

Therefore, the final objective is the use of different Machine Learning (ML) and Deep Learn-
ing (DL) techniques based on the collection of network flow features thanks to the created
capture system for anomalous detection.

2 Traffic capture Process

In this section, we propose a system to collect, process and select flow features for traffic
classification in SDN with the objective of creating a set of features classified into different
types of traffic flows. To create this system, the used controller is ONOS (Open Network
Operating System) which is an open source project that provides a web GUI and an API [7]
for developing ONOS-based applications. To provide an example of use of this API, in [8] the
creators build an application for ONOS controller which creates a simple firewall that blocks
more than two pings in a row.

There are several data capture techniques for downstream feature extraction. In [3] they
create a network topology in which some hosts generate anomalous traffic and perform known
attacks. The hosts themselves are individually responsible for capturing the traffic with the
Tcpdump tool and saving it in PCAP files for later processing with the CICFlowMeter tool [5].
However, this approach does not take advantage of the controller for the information gathering
and does not make real time decisions.

2.1 Scenario

The fact of using OF switches such as Open vSwitch (OVS) allows the controller to obtain
the information directly with a global view of the network and as previously mentioned, the
controller is in charge of all the control logic and the one in charge of deciding which actions
can be performed and which cannot.

These OF switches have a flow table with inputs and when a switch receives a new flow, it
looks for an entry in the table that matches that flow and if it does not match, a PACKET IN
message with some information is sent to the controller. The ONOS controller is able to obtain

117



Annotated Dataset for Anomaly Detection in a SDN infraestructure Otero and Carneiro

certain data from the packets, such as the source ip, destination ip, source port, destination port
or protocol. However, these characteristics are very insufficient when developing a feature-based
system for anomaly detection.

As mentioned above, ONOS allows the addition of extra modules through ONOS applica-
tions. By default, there are a number of ONOS applications that can be enabled or disabled via
the GUI or the driver CLI. In the same way, ONOS allows the creation of custom applications
through its Java API that provides great programmability for topology functionality.

Therefore, in the proposed scenario, the OF switches are in charge of receiving the packets
from the hosts and sending this information directly to the controller which will be in charge of
receiving all the information and processing it to extract the indicated features thanks to the
created ONOS-based application to subsequently, through machine learning techniques, make
decisions about the network topology in a global way taking into account the traffic generated
and received by all the hosts.

2.2 Proposed architecture

The proposed architecture is based on [3] in which a series of virtual machines are deployed
simulating different agents for different kind of traffic generation, but with certain differences
such as the data capture module or the configurations of the different applications.

Four virtual machines are created in a VMware Workstation environment. The first one is
an Ubuntu 16.04 LTS machine in which the ONOS driver will be installed through the open
source platform Docker which provides an easy deployment of the SDN. This VM will be in
charge of controlling the rest of the network through the controller and it will also contain the
data capture and processing module which means that it will be the core of the system. The
second VM will be a Kali Linux machine that will be in charge of simulating the different attacks
against the other hosts in the network using the wide variety of offensive security tools that
are pre-installed in the OS. The third VM will be a Metasploitable 2.0 machine which is a host
vulnerable to all kinds of attacks and will serve to make effective most of the attacks performed
by the Kali linux VM. Finally, the last VM will be a pre-packaged Ubuntu 16.04 machine
containing Mininet [6], the OpenFlow binaries and the necessary tools to configure it. Mininet
allows us to create a realistic virtual network, running real kernel, switch and application code
on a single machine and this helps us create a greater variety of traffic simulation.

2.3 Implementation of traffic capture and feature extraction system

The application for the traffic capture and feature extraction was developed entirely in Java,
as it is the default language for the ONOS API. This application works as follows:

The first step is to create an ONOS application and syncronize it with the controller, then
it is important to tell this ONOS application that a packet processor is going to be created, this
processor will be in charge of doing a first packet filtering, that is to say, it will separate TCP,
UDP or ICMP traffic depending on the payload content found in the IP header of the packet.

It is important to analyze traffic in context and not in a single direction, which is why traffic
is grouped into flows. Because of this, the next step is to obtain raw data from the filtered
packets and then create a unique key for each detected flow. This means that, once a packet
is received from the controller, the application creates a key and stores the flow in a key-value
mapping for a set period of time, if the controller receives another packet corresponding to a
flow stored within that period of time, this packet is added to the context of that flow.

Once the system is grouping these flows and classifying them roughly, the application is
in charge of calling a function that obtains from these flows a great variety of characteris-

118



Annotated Dataset for Anomaly Detection in a SDN infraestructure Otero and Carneiro

tics, specifically 75 characteristics. These flow characteristics are grouped into seven groups:
Network-based attributes, Packet-based attributes, Interarrival Times attributes, Flow timers
attributes, Flag-based attributes, Flow-based attributes and Subflow-based attributes.

Finally, with all these features, the controller is able to obtain a large amount of information
from all network flows and put them in context in order to fine-tune the anomaly detection
system using machine learning or deep learning techniques.

3 Conclusions and Future Work

SDN is a novelty for conventional networks and brings with it a lot of advantages, however,
the technology is fairly new and this means that the documentation of most driver software
is incomplete or its compatibility with other software is poor, which led to great difficulties in
creating the traffic capture module for feature extraction. Despite the difficulties, the system
created has been able to capture the traffic generated in the test scenario and has been efficient
with flow feature extraction and traffic classification. This system is also transparent to poten-
tial attackers as the entire operation is performed from the controller. This system will serve
to solve one of the problems related to the availability of datasets in the SDN environment by
helping researchers to be able to create datasets in a simpler way taking into account almost
any type of traffic.

As future work, the elaboration and capture of different types of traffic with anomalies that
have not been contemplated in this work is proposed. In addition, in our case we propose the
implementation of response code to these traffic anomalies detected thanks to the programma-
bility of the ONOS controller.

References

[1] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: Taking control of the enterprise. https://dl.acm.org/doi/10.1145/1282427.

1282382, 2007.

[2] Vaibhav Hemant Dixit, Sukwha Kyung, Ziming Zhao, Adam Doupé, Yan Shoshitaishvili, and
Gail-Joon Ahn. Challenges and preparedness of sdn-based firewalls. https://dl.acm.org/doi/

proceedings/10.1145/3180465, 2018.

[3] Mahmoud Said Elsayed, Nhien-An Le-Khac, and Anca D Jurcut. Insdn: A novel sdn intrusion
dataset. https://ieeexplore.ieee.org/document/9187858, 2020.

[4] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flowguard: building robust firewalls
for software-defined networks. https://dl.acm.org/doi/proceedings/10.1145/2620728, 2014.

[5] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and Ali A Ghor-
bani. Characterization of tor traffic using time based features. https://www.researchgate.

net/publication/314521450_Characterization_of_Tor_Traffic_using_Time_based_Features,
2017.

[6] Mininet. Mininet vm. http://mininet.org/download/, 2022.

[7] ONOS Project. Onos java api (2.4.0). http://api.onosproject.org/2.4.0/apidocs/index.html,
2022.

[8] Nan Haymarn Oo and Aung Htein Maw. Firewall application for onos sdn controller. https:

//meral.edu.mm/records/4989, 2017.

[9] Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner, and Vinod Yegneswaran. Se-
curing the software defined network control layer. https://www.ndss-symposium.org/ndss2015/

ndss-2015-programme/securing-software-defined-network-control-layer/, 2015.

119

https://dl.acm.org/doi/10.1145/1282427.1282382
https://dl.acm.org/doi/10.1145/1282427.1282382
https://dl.acm.org/doi/proceedings/10.1145/3180465
https://dl.acm.org/doi/proceedings/10.1145/3180465
https://ieeexplore.ieee.org/document/9187858
https://dl.acm.org/doi/proceedings/10.1145/2620728
https://www.researchgate.net/publication/314521450_Characterization_of_Tor_Traffic_using_Time_based_Features
https://www.researchgate.net/publication/314521450_Characterization_of_Tor_Traffic_using_Time_based_Features
http://mininet.org/download/
http://api.onosproject.org/2.4.0/apidocs/index.html
https://meral.edu.mm/records/4989
https://meral.edu.mm/records/4989
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/securing-software-defined-network-control-layer/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/securing-software-defined-network-control-layer/

	1 Introduction
	2 Traffic capture Process
	2.1 Scenario
	2.2 Proposed architecture
	2.3 Implementation of traffic capture and feature extraction system

	3 Conclusions and Future Work
	References

